54415 11

TIME: 2 Hrs. Marks: 60

- N.B.: 1. All questions should be compulsory.
 - 2. Figures to the right indicates marks.
- Q.1 a. Define feasible solⁿ of Lpp.

(1)

OR

Define slack variable.

- b. Attempt any Two.
 - i. Solve by Simplex Method.

(7)

Max.

$$z = 2x_1 + 4x_2$$

Subject to

$$2x_1 + 3x_2 \le 48$$

$$x_1 + 3x_2 \le 42$$

$$x_1 + x_2 \le 21$$

$$X_1, X_2 \ge 0$$

ii. Solve the following Lpp by graphical method.

(7)

Maximize z = 6x + 7y

Subject to

$$2x + 3y \le 12$$

$$2x + y \le 8$$

$$x, y \ge 0$$

iii. Prove that dual of dual is primal & write economic interpretation of duality.

(7)

Q.2 a. Define balanced & unbalanced transportation problem.

(1)

OR

Define optimal solⁿ of transportation problem.

- b. Attempt any Two.
 - 1. Find IBFS by North West corner rule.

(7)

Origine →	I	II	III	IV	ai
Source ↓					
1	8	10	7	6	50
2	12	9	4	7	40
3	9	11	10	8	30
bj	25	32	40	23	

2. Find IBFS by VAM.

1	Origine →	I	II	III	IV	ai
1	Source ↓					
1	1	8	10	7	6	50
	2	12	9	4	7	40
	3	9	11	10	8	30
	bj	25	32	40	23	

3. Write the method of matrix - minima & solve the following problem by matrix - minima method.

PI	9	17	+	S

		P ₁	P_2	P ₃	P ₄	Requirement			
Machines	M_1	19	14	23	11				
	M_2	15	16	12	21	13			
	M_3	30	25	16	39	19			
	Supply	6	10	11	15				

Q.3 a. Define mathematical formulation of assignment problem.

OR

Define balanced - unbalanced assignment problem.

b. Attempt Any Two.

1. Write Hungarian method to solve an assignment problem.

2. Solve the following assignment problem.

Jobs

II IV V	III	II	I	
0 12 4	10	11	5	A
6 3 5	6	4	2	s B
5 14 6	5	12	3	C
4 11 7	4	14	6	Mag
8 12 5	8	. 9	7	E
6 3 5 5 14 6 4 11 7	6 5 4	4 12 14	2 3	Machines U O W

3. Four machines M₁, M₂, M₃, M₄ are to be installed in a machine shop. There are 5 recent places A, B, C, D, E. Because of limited space machine M₂ can not be placed at C & M₃ can not be placed at A. The assignment cost of machine i to place j is ₹100 as shown

(7)

	Α	В	С	D	E
M_1	4	6	10	5	6
M_2	7	4	-	5	4
M_3	-	6	9	6	2
M_4	9	3	7	2	3

Q.4 a. Define formulation of Lpp.

(1)

(7) -

(7)

OR

Define formulation of transportation problem.

b. Attempt Any Two.

- A toy manufactured has to manufacture scooters & bicycle.
 Each toy has to undergo processing through two machines,
 machine A & machine B. A bicycle requires 6 hr. in machine
 A & 3 hr. in machine B. A scooter requires 4 hr. in machine A
 & 10 hr. in machine B. Machine A & B are available for almost
 120 hr. & 180 hr. respectively. The profit cost per bicycle is ₹100
 & per scooter is ₹800. Formulate the above Lpp for maximization.
- 2. Write a note on Vogel's approximation method to solve transportation problem & North west corner rule.
- 3. A market manager has 5 salesmen & 5 sales district considering the capacities of salesman & nature of district. The marketing manager existment that sales per month is 100 per each salesman in each district would be as follows.

District

	A	В	С	D	E
7	32	38	40	28	40
smai	40	24	28	21	36
Salesman	41	27	33	30	37
	22	38	41	36	36
	29	33	40	35	39